Sex-/ovarian steroid-dependent release of endomorphin 2 from spinal cord.
نویسندگان
چکیده
Mu-opioid receptor (MOR) agonists have been shown to be more potent analgesics in male than female rodents. Regulation of spinal MOR-coupled antinociception by 17beta-estradiol (estrogen, E2) and progesterone (P) is also sexually dimorphic; pregnancy levels of E2/P activate MOR-coupled analgesic pathways in male but not female rats. We hypothesized that the sexual dimorphic characteristics of MOR-coupled antinociception reflects sexual dimorphism in the regulation of the release from spinal cord of the endogenous MOR agonist, endomorphin 2 (EM2). Parameters of spinal EM2 release manifesting sexual dimorphism include its 1) magnitude: in vitro basal and K+-evoked release of EM2 from spinal tissue of male rats is approximately 50% greater than that observed from spinal cord of females; 2) modulation by ovarian sex steroids: E2/P treatment significantly enhanced K+-evoked EM2 release from spinal tissue of males, but not females; and 3) enhancement by opioid receptor blockade: naloxone enhanced stimulated EM2 release from spinal tissue of both males and females, but it augmented basal release from spinal tissue of only males. Enhancement of EM2 release by naloxone reflects negative coupling of MOR to EM2 release and hence its modulation by negative feedback since only activation of MOR, not kappa-or delta-opioid receptors, was able to inhibit evoked EM2 release. These data reveal that the EM2-MOR spinal analgesic system is more robust and "higher gain" in male versus female rodents. These findings could provide a mechanistic rubric for understanding the male female dichotomy in prevalence and intensity of chronic pain syndromes.
منابع مشابه
Ovarian sex steroid-dependent plasticity of nociceptin/orphanin FQ and opioid modulation of spinal dynorphin release.
Pregnancy and its hormonal simulation via 17beta-estradiol (E(2)) and progesterone (P) are associated with spinal opioid antinociception, primarily driven by augmented dynorphin/kappa-opioid activity. This study addresses the ovarian sex steroid-activated mechanism(s) that underlie this activation using an ex vivo spinal cord preparation. In lumbar spinal cord obtained from control animals, exo...
متن کاملEstrogens Suppress Spinal Endomorphin 2 Release in Female Rats in Phase with the Estrous Cycle.
BACKGROUND/AIMS Male and female rats differ in their ability to utilize spinal endomorphin 2 (EM2; the predominant mu-opioid receptor ligand in spinal cord) and in the mechanisms that underlie spinal EM2 analgesic responsiveness. We investigated the relevance of spinal estrogen receptors (ERs) to the in vivo regulation of spinal EM2 release. METHODS ER antagonists were administered directly t...
متن کاملDifferential antinociception induced by spinally administered endomorphin-1 and endomorphin-2 in the mouse.
We have previously demonstrated that the antinociception induced by either endomorphin-1 or endomorphin-2 given supraspinally is mediated by the stimulation of mu-opioid receptors. However, the antinociception induced by endomorphin-2 given supraspinally contains additional components, which are mediated by the spinal release of dynorphin A (1-17) acting on kappa-opioid receptors and the spinal...
متن کاملPossible involvement of dynorphin A-(1-17) release via mu1-opioid receptors in spinal antinociception by endomorphin-2.
The antinociception induced by i.t. or i.c.v. administration of endomorphins is mediated via mu-opioid receptors. However, although endomorphins do not have an appreciable affinity for kappa-opioid receptors, pretreatment with the kappa-opioid receptor antagonist norbinaltorphimine markedly reduces the antinociceptive response to i.c.v. or i.t. administered endomorphin-2 but not endomorphin-1. ...
متن کاملLaser Acupuncture and Local Laser Therapy in Veterinary Medicine with Overview of Applied Laser Types and Clinical Uses
Wang Y1, Zhang Y, Wang W, Cao Y, Han JS. Effects of synchronous or asynchronous electroacupuncture stimulation with low versus high frequency on spinal opioid release and tail flick nociception. Exp Neurol. 2005 Mar;192(1):156-62. Electroacupuncture stimulation (EAS) is known to change brain neurotransmitter release. In the present study, we investigated the effects of synchronous or asynchrono...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of pharmacology and experimental therapeutics
دوره 321 2 شماره
صفحات -
تاریخ انتشار 2007